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The Problem
We aim to understand how quantities involv-
ing randomness or complex dynamics evolve
over time. This can be expressed as:

dX(t)

dt
= f(X(t), t)

However, directly solving these high dimen-
sional equations is computationally expensive.
Instead, we use a reduced order model that
evolves the statistical moments. The n-th
moment is defined as:

µn = E[Xn] =

∫
xnp(x) dx

Deriving moment evolution equations from
the original system results in an infinite hier-
archy of equations:

dµ1

dt
= H(µ1, µ2, . . . )

dµ2

dt
= H(µ2, µ3, . . . )

Gaussian Closure
A common way to close the system is by as-
suming the random variables follow a Gaus-
sian distribution. In this case, moments of
order n > 2 are approximated as functions of
the first two moments:

µn ≈ f(µ1, µ2)

The Gaussian closure is used since it is the
only distribution where higher order mo-
ments can be expressed using the first two
moments. Although this closure method is
widely used, it ignores higher order informa-
tion that might be useful.

Cumulant Truncation
We approximate higher-order moments by
truncating cumulants, κn, an alternative
to moments capturing the same informa-
tion. Based on the Central Limit Theorem,
higher-order cumulants decay faster. For m
identical random variables X:

κn

(
1

m

∑
Xi

)
=

1

mn−1
κn(X)

This shows that higher-order cumulants de-
cay to zero, allowing for the truncation of
cumulants beyond a certain order without
significant loss of information. By choosing
how much higher-order information to retain,
this truncation allows for system closure. We
have developed techniques based on this.

Naive Truncation
Naive truncation is a method that involves
setting higher-order cumulants to zero and
using this approximation to convert back to
moments. Specifically:

(µ1, µ2, . . . , µk) → (κ1, κ2, . . . , κk)

(κ1, . . . , κk) → (κ1, κ2, . . . , κk, 0k+1, . . . , 0l)

(κ1, ., κk, 0k+1, ., 0l) → (µ1, ., µk, µ
′
k+1, ., µ

′
l)

Product Order Truncation
Moments are computed as the sum of the
products of lower order cumulants.

µn =

n∑
k=1

k∏
j=1

κj

The product order truncation method trun-
cates cumulants based on the order of their
products, not individual cumulants.

Normalized Truncation
Normalized truncation sets the first cumu-
lant order (mean) to 0 and the second cu-
mulant order (variance) to 1, adjusting the
others accordingly. This simplifies computa-
tions by not accounting for the mean.

κ

(
1√
N

∑
Xi − X̄

)
=

(
0, κij ,

1√
N

κijk,
1

N
κijkl, . . .

)

Truncation Results

In certain cases, naive and normalized trun-
cation outperform the Gaussian method, with
normalized truncation showing the most im-
provement.

However, in other cases, we see that these
cumulant truncation methods exhibit unstable
behavior. This is due to the violation of this
property:

X > 0 =⇒ E[X] > 0

Central Limiting Method
The Central Limiting Method (CLT) ad-
dresses the instability issues with a natural
decay instead of abrupt truncation. It first
converts the moments µn to cumulants κn,
then applies the decay, and then converts the
adjusted cumulants back to moments:

κn = f(µ1, µ2, . . . , µn)

κ′
n = κn exp(−αn)

µ′
n = g(κ′

1, κ
′
2, . . . , κ

′
n)

Sum of Squares Projection
Moment sequences that have real represent-
ing measures correspond to the dual set of
positive polynomials. The dual set of the
sums of squares (SOS) polynomial consists
of sequences with a positive semi-definite
moment matrix. We project those without a
representing measure into the SOS dual.

Σ∗ = {L(p2) ≥ 0∀p ∈ R[x]}
M⪰ = {y ∈ RNn | M(y) ⪰ 0} = Σ∗

CLT and SOS Results

Applying the CLT method prevents the insta-
bilities that normalized and naive truncation
were suffering with.

The SOS method, however, fails to prevent
instabilities and, in fact, introduces them in
cases where they previously did not occur.

Future Work
We observed improved performance using the
naive and normalized truncation methods,
especially with the added stability from the
CLT-based approach. However, the SOS Pro-
jection has yet to show the expected stability
gains. Future work will focus on refining the
SOS Projection to enhance moment sequence
stability.


