
System Identification Tools for Precise Control of
Motors

Project Manager: Shreya Jha (Georgia Institute of Technology)
Member: Shaymaa Mahmoud (American University in Cairo)

Member: Michelle Bang (Oregon State University)
Member: Emre Isik (University of Cambridge)

Academic Mentor: Chunyang Liao
Industry Mentor: Srilakshmi Pattabiraman

August 22, 2024

1 / 52

Outline

1 Introduction

2 Vector Fitting Algorithm
Overview
Numerical Results

3 Neural Networks
Overview
ReLU Neural Networks
Rational Neural Networks

Proposed Architecture 1
Proposed Architecture 2

4 Summary

2 / 52

Introduction: Analog Devices Inc. (ADI)

Semiconductor company
specializing in signal
processing, and power
management technologies,
headquartered in Wilmington,
Massachusetts.

Solutions to drive
advancements in
manufacturing, EVs,
healthcare, drones, 3D
printers and many other
industries.

3 / 52

Introduction: The Project Motivation

Analog Devices, Inc. provides precision motors and advanced control
solutions, necessitating precise control of a motor’s trajectory.

Computing an accurate input-output relationship of any given system
is vital in achieving this position control

Transfer Function (TF) describes a component’s behavior with
respect to any given input.

4 / 52

Introduction: The Project Motivation

Figure: Blackbox System

Transfer Functions can be computed using physics based principles,
but this becomes more difficult with increased complexity.
We can use data-driven methods to compute the input-output
relationship, such as Vector Fitting.
Vector Fitting works well with clean data, but performs poorly with
noisy data.

GOAL: Use machine learning techniques in conjunction with
traditional data-driven methods to compute a system’s
input-output relationship.

5 / 52

Introduction: The Project Motivation

Figure: Blackbox System

Transfer Functions can be computed using physics based principles,
but this becomes more difficult with increased complexity.
We can use data-driven methods to compute the input-output
relationship, such as Vector Fitting.
Vector Fitting works well with clean data, but performs poorly with
noisy data.
GOAL: Use machine learning techniques in conjunction with
traditional data-driven methods to compute a system’s
input-output relationship.

6 / 52

Contents

1 Introduction

2 Vector Fitting Algorithm
Overview
Numerical Results

3 Neural Networks
Overview
ReLU Neural Networks
Rational Neural Networks

Proposed Architecture 1
Proposed Architecture 2

4 Summary

7 / 52

Overview

The Vector Fitting algorithm is designed to solve the following
problem.

Setting Up the Problem:

For a linear time-invariant system:
y(t) =

∫ +∞
−∞ h(t − τ)x(τ)dτ

y(t) is the output signal in t-domain.

x(t) is the input signal in t-domain.

h(t) is the unknown impulse response.

NEXT STEP: Convert to s-domain (frequency-domain) by
applying the Laplace transform.

8 / 52

Overview Cont.

Problem Statement: Input/Output Relationship

Y (s) = H(s)X (s) =⇒ H(s) = Y (s)
X (s)

s = jω, where ω is frequency and j =
√
−1.

Y (s) is the output signal in s-domain.

X (s) is the input signal in s-domain.

H(s) is our unknown transfer function.

GOAL: We want to approximate H(s).

9 / 52

Vector Fitting Algorithm

We can approximate H(s) with Ĥ(s) with VF:

Ĥ(s) =

∑n
i=0 ai s

i∑n
i=0 bi s

i
= r0 +

n∑
i=1

ri
s − pi

{pi}ni=1 are poles that are initialized and updated within the algorithm
and {ri}ni=1 are unknown residues.

Given K samples (jω1 ... jωK) and corresponding H(jω1) ... H(jωK)
as our inputs, we aim to minimize the mean squared error:

e =
1

K

K∑
k=1

|Ĥ(jωk)− H(jωk)|2

The algorithm iteratively minimizes the mean squared error through
least squares regressions after fixing the unknowns in the denominator
(Gustavsen and Semlyen, 1999).

10 / 52

Contents

1 Introduction

2 Vector Fitting Algorithm
Overview
Numerical Results

3 Neural Networks
Overview
ReLU Neural Networks
Rational Neural Networks

Proposed Architecture 1
Proposed Architecture 2

4 Summary

11 / 52

Synthetic Data Generation

Synthetic data was generated in Python by defining an arbitrary
transfer function of degree 3.

The data consisted random frequencies that were log-spaced apart
with its corresponding H values.

Two types of synthetic data were tested:

Clean, noise-free data.
Noisy data.

Noise was randomly drawn from a standard normal distribution and
added separately to the phase and magnitude of H.

The strength of the noise level can be adjusted depending on the
Signal-to-Noise Ratio (SNR).

SNR = 10 log(
signal

noise
)

12 / 52

Vector Fitting Algorithm trained on Synthetic Clean Data

Figure: Magnitude and Phase vs. Frequency

Given H(s) = a + bj ,

Magnitude(s) =
√
a2 + b2

Phase(s) = tan−1(ba)
13 / 52

Vector Fitting Algorithm trained on Synthetic Noisy Data

Figure: Magnitude and Phase vs. Frequency

14 / 52

Simulated Data Generation

Simulated data is generated from the lsim() function in MATLAB.

Both real and simulated data is taken in the time-domain.

A Discrete Fourier Transform using the Fast-Fourier Transform
function from SciPy is used to transform the data into s-domain.

Simulated data uses the same transfer functions derived from the
Trinamic motors for the following loops:

1 Current Open Loop, order: 2
2 Current Closed Loop, order: 3
3 Velocity Loop, order: 7

Order represents the degree of the transfer function.

ex.
s + 2

s2 + s + 3

is a second order transfer function.

15 / 52

Current Loop

Figure: Control Loop Diagram of Current Loop.

16 / 52

Velocity Loop

Figure: Control Loop Diagram of Velocity Loop.

17 / 52

Vector Fitting Algorithm trained on Simulated Data

100 101 102 103 104 105 106 107
Frequency (rad/s)

−100

−80

−60

−40

−20

M
ag

ni
tu
de

 (d
B)

B de Magnitude Pl t
Appr ximated H
The retical H
Sample P ints (Magnitude)

100 101 102 103 104 105 106 107
Frequenc((rad/s)

−350

−300

−250

−200

−150

−100

−50

0

Ph
as
e
(d
eg

re
es
)

B de Phase Pl t
Appr ximated H
The retical H
Sample P ints (Phase)

Figure: Open Loop- Magnitude and Phase vs. Frequency.
18 / 52

Real Data Generation

We generated real data with
the stepper motors provided
by Analog.

50 singular sine waves were
fed into the system. Each
wave is an input to our
algorithm.

19 / 52

Vector Fitting Algorithm trained on Real Data

100 101 102 103 104 105 106 107
Frequency (rad/s)

−100

−80

−60

−40

−20

M
ag

ni
tu
de

 (d
B)

B de Magnitude Pl t

Appr ximated H
The retical H
Sample P ints (Magnitude)

100 101 102 103 104 105 106 107
Frequenc((rad/s)

−250

−200

−150

−100

−50

0

Ph
as
e
(d
eg

re
es
)

B de Phase Pl t
Appr ximated H
The retical H
Sample P ints (Phase)

Figure: Open Loop- Magnitude and Phase vs. Frequency.
20 / 52

Vector Fitting Algorithm trained on Real Data

100 101 102 103 104 105 106 107
Frequency (rad/s)

−70

−60

−50

−40

−30

−20

−10

0

M
ag
ni
tu
de
 (d

B)

Bode Magnitude Plot

A roximated H
Theoretical H
Sam le Points (Magnitude)

100 101 102 103 104 105 106 107
Frequency (rad/s)

−250

−200

−150

−100

−50

0

Ph
as
e
(d
eg
re
es
)

Bode Phase Plot
A roximated H
Theoretical H
Sam le Points (Phase)

Figure: Closed Loop- Magnitude and Phase vs. Frequency.
21 / 52

Vector Fitting Algorithm trained on Real Data

100 101 102
Frequency (rad/s)

−20

−15

−10

−5

0

5

M
ag
ni
tu
de
 (d

B)

Bode Magnitude Plot
Approximated H
Theoretical H
Sample Points (Magnitude)

100 101 102
Fre uency (rad/s)

−100

−80

−60

−40

−20

0

Ph
as
e
(d
eg
re
es
)

Bode Phase Plot
Approximated H
Theoretical H
Sample Points (Phase)

Figure: Velocity Loop- Magnitude and Phase vs. Frequency.
22 / 52

Contents

1 Introduction

2 Vector Fitting Algorithm
Overview
Numerical Results

3 Neural Networks
Overview
ReLU Neural Networks
Rational Neural Networks

Proposed Architecture 1
Proposed Architecture 2

4 Summary

23 / 52

Neural Networks Overview

Neural networks are composed of multiple layers, each designed to
perform linear operation and then apply non-linear activation function
Mathematically, the function can be expressed as x→ f (Wx + b),
where W is the weight matrix, b is the bias vector, and f is a
non-linear activation function.

Figure: Structure of deep neural network
24 / 52

Neural Networks Overview

Figure: Forward propagation and backward propagation.

In the forward pass, input data is passed through the neural network
layer by layer, with each layer performing calculations and
transformations, to create an output prediction.

The backward pass involves computing the gradients of the loss
function with respect to each parameter using chain rule, which is
then used to update the parameters to minimize the loss.

25 / 52

Contents

1 Introduction

2 Vector Fitting Algorithm
Overview
Numerical Results

3 Neural Networks
Overview
ReLU Neural Networks
Rational Neural Networks

Proposed Architecture 1
Proposed Architecture 2

4 Summary

26 / 52

ReLU Activation Function

Rectified Linear Unit (ReLU) Equation

ReLU(x) = max(0, x)

ReLU is widely used because it is computationally efficient and fast to
evaluate.

Many theoretical studies have compared deep and shallow ReLU
networks from the perspective of approximation theory (Daubechies
et al., 2019).

Weight matrix W and bias vector b are the training parameters for
ReLU neural networks.

27 / 52

Neural Network Structure

Figure: Accuracy score analysis for different structures

Highly sensitive to both number of layers and number of nodes

Requires many layers and nodes, especially with noisy data - high
computational complexity

28 / 52

Data Requirements

Figure: Data requirements for training at different noise levels

29 / 52

Data Requirements

Figure: 10 SNR Deep NN and VF comparison

30 / 52

Main Takeaways

For number of samples below 50, noise distorts accuracy significantly

ReLU neural network is robust to noise given that there is sufficient
amount of training data

Nevertheless, it requires 200+ samples to achieve reasonable accuracy
- data hungry

Impossible to analyse the transfer function approximated by the
neural network

31 / 52

Contents

1 Introduction

2 Vector Fitting Algorithm
Overview
Numerical Results

3 Neural Networks
Overview
ReLU Neural Networks
Rational Neural Networks

Proposed Architecture 1
Proposed Architecture 2

4 Summary

32 / 52

Rational Activation Function

Rational Activation Function Equation

f (x) =
∑n

i=1 aix
i∑n

i=1 bix
i

The coefficients {ai}ni=1 and {bi}ni=1 in the rational activation
function are trainable parameters.

Rational activation functions mirror the mathematical properties of
the target transfer function H(s) = Y (s)

X (s) , making the entire neural
network a rational function.

33 / 52

Contents

1 Introduction

2 Vector Fitting Algorithm
Overview
Numerical Results

3 Neural Networks
Overview
ReLU Neural Networks
Rational Neural Networks

Proposed Architecture 1
Proposed Architecture 2

4 Summary

34 / 52

Rational NN Architecture 1 - Explanation

s

Input
layer

h1

h2

Hidden
layer

Ĥ(s)

Output
layer

The number of nodes in the hidden layer depends on the order of the system.

For a second-order system, use two nodes:

h1 =
a1s + b1
c1s + d1

, and h2 =
a2s + b2
c2s + d2

The summation of these nodes approximates the system’s transfer function:

Ĥ(s) =
n∑

i=1

hi

Coefficients are initialized as:

ai , bi , ci , di ∼ N (0, 1)
35 / 52

Rational NN Architecture 1 - Synthetic Data

We use the second-order transfer function to generate synthetic data.

Training Samples Noise Level (SNR) Rational Model Error VF Model Error

10 Noise-free 0.08279 0.00000
50 Noise-free 0.01154 0.00000
100 Noise-free 0.000246 0.00000
10 10 dB 0.30738 0.40425
50 10 dB 0.13575 0.53133
100 10 dB 0.03900 0.70630
10 5 dB 0.53178 1.07197
50 5 dB 0.16444 0.93528
100 5 dB 0.02870 1.21592

Table: Average test relative error comparison between rational and VF algorithm
for 1000 test samples

The VF model shows insignificant error in noise-free conditions, but
its performance degrades significantly in high noise.

As training samples increase, rational networks have lower test error .

Rational model performs better than VF in noisy scenarios.
36 / 52

Rational NN Architecture 1 - Simulated Data

We use the open loop transfer function for simulating the training data

Training Samples Noise Level (SNR) Rational Model Error VF Model Error

10 Noise-free 1.1759 0.0002
50 Noise-free 0.7107 0.00011
10 10 dB 1.8889 0.1070
50 10 dB 1.1093 0.7093
10 5 dB 1.9220 1.8763
50 5 dB 1.0846 3.8102

Table: Average test relative error comparison between rational and VF models for
1000 test samples

In noisy conditions, the performance of the Rational model improves
as the number of samples increases.

VF model struggles with higher noise levels, especially with a higher
number of training samples.

37 / 52

Rational NN Architecture 1 - Real Data

Loop Type (50 samples) Rational Model Error VF Model Error

Open Loop 0.328912 0.3889
Closed Loop 0.292844 0.4025

Table: Average test relative error comparison between rational and VF model for
1000 test samples

VF model performs better in open loop than in closed loop.

Performance differences highlight the models’ sensitivity to loop type
in real-world data.

38 / 52

Rational NN Architecture 1 - Real Data

Figure: Performance with 50 real samples for open loop
39 / 52

Rational NN Architecture 1 - Real Data

Figure: Performance with 50 real samples for closed loop
40 / 52

Main Insights for Proposed Architecture 1

Noise Sensitivity: While the Rational NN is more resilient to noise,
the VF performance degrades significantly with increasing noise levels,
especially in synthetic data.

Scalability: The Rational NN model scales effectively with an
increase in training data, reducing the test error substantially as the
number of samples grows, consistent across both synthetic and
simulated data.

41 / 52

Contents

1 Introduction

2 Vector Fitting Algorithm
Overview
Numerical Results

3 Neural Networks
Overview
ReLU Neural Networks
Rational Neural Networks

Proposed Architecture 1
Proposed Architecture 2

4 Summary

42 / 52

Rational NN Architecture 2 - Explanation

s

Input
layer

h

Hidden
layer

Ĥ(s)

Output
layer

h(s) =
∑n

i=1 ai s
i∑n

i=1 bi s
i , {ai}ni=1 and {bi}ni=1 are the parameters tuned in

training.

In this architecture, n is chosen depending on the order of the system
being modeled.

There is only one node in the hidden layer regardless of the order of
system.

This architecture uses gradient descent whereas Vector Fitting uses a
least squares regression.

43 / 52

Rational NN Architecture 2 - Initialization Methods

Random Initialization chooses the values of {ai}ni=1 and {bi}ni=1 by
drawing from a normal distribution.

Vector Fitting Initialization sets the values of {ai}ni=1 and {bi}ni=1

to be the coefficients that the Vector Fitting algorithm returns.

44 / 52

Rational NN Architecture 2 - Synthetic Data

Figure: Average relative error by number of training samples with SNR 20 dB
noisy data.

45 / 52

Rational NN Architecture 2 - Synthetic Data

Figure: Average relative error by number of training samples with SNR 5 dB noisy
data.

46 / 52

Rational NN Architecture 2 - Real Data

Figure: Vector fitting and complex rational neural net with vector fitting
initialization trained on 50 real data samples (closed loop).

47 / 52

Rational NN Architecture 2 - Real Data

Figure: Vector fitting and complex rational neural net with random initialization
trained on 50 real data samples (closed loop).

48 / 52

Contents

1 Introduction

2 Vector Fitting Algorithm
Overview
Numerical Results

3 Neural Networks
Overview
ReLU Neural Networks
Rational Neural Networks

Proposed Architecture 1
Proposed Architecture 2

4 Summary

49 / 52

Summary

Implemented the Vector Fitting algorithm to compute the
input/output relationship between frequency and responses, and
assessed its performance with clean and noisy data

Developed a deep learning neural net to directly compute the
input/output relationship which performs better than Vector Fitting
with noisy data

Developed a rational neural net that has less trainable parameters
than the deep neural net and performs better than Vector Fitting with
noisy data

Developed a rational neural net that is initialized with the Vector
Fitting outputs and tunes the results to achieve better performance

50 / 52

Acknowledgements

Thank you to Analog Devices,
Inc. for proposing this project
and sponsoring us!

Thank you to IPAM for also
sponsoring us!

Special thanks to our industry
mentor Srilakshmi
Pattabiraman and our
academic mentor Chunyang
Liao for helping us throughout
the program.

51 / 52

Thanks for listening!
Questions?

52 / 52

	Introduction
	Vector Fitting Algorithm
	Overview
	Numerical Results

	Neural Networks
	Overview
	ReLU Neural Networks
	Rational Neural Networks

	Summary

